Facebook Gets Into the Satellite Business

fFacebook has reportedly registered a new subsidiary to build low earth orbit (LEO) satellites, competing with SpaceX, OneWeb, and others. The subsidiary, called PointView Tech, plans to launch a demonstration satellite in 2019 to investigate using the E-band spectrum for communications. E-band promises much higher data connection speeds than those planned by rivals, but needs to overcome challenges, including absorption by rain or other particles. E-band is also used by the Facebook drone project called Aquila.

For the Facebook satellite constellation to work, there would need to be thousands of satellites, similar to SpaceX and OneWeb.

The PointView Tech initiative puts Facebook in direct competition with SpaceX. There doesn’t appear to be much love lost between Mark Zuckerberg and Elon Musk. They have engaged in a public feud around AI. Musk recently deleted all Tesla accounts from Facebook. The relationship also wasn’t helped when Facebook’s last satellite project, AMOS-6, blew up on launch of a SpaceX rocket in August 2016.

Low Cost Satellite Networks

cubeWhile SpaceX, OneWeb, O3B and other multi-billion dollar satellite constellations garner most of the press, other lower cost initiatives demonstrate a different and potentially consequential approach.

Sky and Space Global, for example, plans to launch 200 nano-satellites (under 10 kg each) into low earth orbit in order to provide telecommunications services in Africa, Latin America, and elsewhere. The satellites, which adhere to CubeSat standards, will be deployed in near-equatorial planes, reaching 15 degrees north and south of the equator.

Satellites will be launched aboard LauncherOne, the air-launched rocket from Virgin Orbit. Satellites will communicate with ground antennas which provide wifi hotspots, or potentially with a new generation of $20 Android phone capable of direct communications with the satellites.

Sky and Space Global aims to build and launch the entire constellation of 200 satellites for $200 million, a fraction of the cost of even one geosynchronous communications satellite.

Coca-Cola to Provide Wifi Hotspots

ekocenterCoca-Cola is planning to build wifi hotspots across sub-Saharan Africa and Southeast Asia. In partnership with Intelsat, Coca-Cola is launching its “Ekocenter” program to promote local development and community. Each Ekocenter will provide local wifi, as well as power and clean water.

The program initially is targeting sub-Saharan Africa and Southeast Asia. Future expansion will include Latin America.

When possible, Ekocenters will be run by women, consistent with Coca-Cola’s 5×20 goal of empowering 5 million women by 2020.

FCC Approves Starlink

sxThe FCC has given conditional approval to the SpaceX Starlink satellite network, the first “mega-constellation” to receive government approval. The Starlink program proposes to launch 4,425 satellites into low earth orbit to provide global broadband services. Service will begin with the first 800 satellites in place, sometime in 2020. SpaceX recently launched two trial satellites that are currently undergoing tests.

The FCC approval was conditional on SpaceX providing updated deorbiting plans for satellites taken out of operations.

Gwynne Shotwell, COO of SpaceX, comments “Although we still have much to do with this complex undertaking, this is an important step toward SpaceX building a next-generation satellite network that can link the globe with reliable and affordable broadband service, especially reaching those who are not yet connected.”

FCC press release and approval documentation are available online.

Airborne Wireless Network

airborneIn the rush to expand broadband, companies are developing satellites, drones, balloons — and even outfitting LandCruisers.

One group, however, is taking a sensible-sounding approach utilizing a resource that is already airborne: commercial aircraft.  The Airborne Wireless Network proposes to outfit hundreds (eventually thousands) of aircraft with telecommunications equipment capable to communicating with both ground stations and other aircraft. The “mini-satellites” would form a mesh network serving worldwide data and communications service providers.

The firm has tested initial prototypes using two aircraft, and plans a 20 aircraft test in early 2018. The anticipated global rollout is scheduled for 2021.

LandCruiser Emergency Network Project

cruise70% of Australia lacks cell coverage. Even remote areas, however, do boast lots of Toyota LandCruisers crisscrossing the terrain.

Flinders University, along with Toyota and Saatchi & Saatchi Australia have proposed outfitting LandCruisers with communications hubs capable of “store and forward” messaging. Each “mobile hotspot” would include wifi, UHF and mesh networking capabilities with a range of 25 km. Messages would be passed from vehicle to vehicle until reaching an internet-connected base station.

The LandCruiser Emergency Network wouldn’t provide true broadband, but would offer messaging services, especially useful during emergencies.

Country-specific Communications Satellites

bangabandhuSpaceX, OneWeb, O3b, and other satellite network companies get a lot of attention for their plans to launch dozens (or perhaps thousands) of communications satellites in coming years.

Relatively less attention is paid to country-specific satellite launches that also have significant impact on expanding broadband.

For example, in early April, SpaceX is scheduled to launch Bangabandhu-1, a communications satellite for the Bangladesh Telecommunication Regulatory Commission. The $250 million satellite will provide broadcasting and telecommunications services to rural areas in Bangladesh from geostationary orbit.

Later in April, the Chinese are launching Apstar 6C, and the Russians are launching Blagovest 12L, both providing (among other things) telecommunications and mobile broadband services to rural areas in China and Russia.

As is always true with satellites in geostationary orbit, both latency and costs tend to be high. That said, each of these satellites (and other country-specific satellites scheduled for launch later this year) play an important role in the expansion of global broadband.

China to Launch Internet Satellite Network

rocketChina has announced plans to launch an internet satellite network, putting it in competition with SpaceX, OneWeb, O3b, and other internet satellite contenders.

The Chinese “Hongyun Project” plans to launch 300 satellites into low earth orbit starting in 2018, with the network operational in 2022 and complete by 2025.

Earlier this year China also successfully demonstrated “quantum encryption” communications by satellite, potentially representing an initial step towards a global quantum internet.

Why 5G Won’t Help Poor Regions

5gDeveloping countries often “leapfrog” technologies. Many regions, for example, can skip landlines and go straight to cellular. Many regions can skip the electrical grid and go straight to solar.

Will this “leapfrog” also happen direct to the latest cellular technology, 5G?

No.

Previous standards — 2G, 3G, 4G — all placed equipment on cell towers typically spaced no closer than a mile apart (and often much farther — cellphones can reach towers tens of miles away). Even at this density, however, the economics for building out a network often don’t work for serving rural areas in developing countries (or even in developed countries in many cases).

5G, unlike its predecessors, requires much denser installation of cell stations — around 500 feet apart in urban regions. This is about 100 times denser than previous standards. The benefit is that 5G can be 100 times faster than 4G, connect 100 times as many devices, and be five times quicker to connect.

By the way, placing hundreds of thousands — perhaps millions — of new cell stations in neighborhoods is unleashing many battles. These are on top of the raging technology battles already underway in defining the 5G standards.

While the poor half of the planet mostly has 2G, is converting to 3G, and aspires to 4G, new 5G standards are poorly suited poor, rural areas. This is another example of the barriers that cellular will have in serving the poorest — and a further reason that alternative connectivity through satellites, balloons, or other means will be necessary.

Satellite Broadband Today

sesSatellite broadband providers mostly fall into two categories: firms (such as Iridium) with satellites in geostationary orbit (thus service is expensive and slow), or new entrants (like OneWeb and SpaceX) promising thousands of satellites in low earth orbit (with service that is cheaper and fast — but doesn’t exist yet).

One firm, however, has already already implemented satellite broadband using a small and growing network of medium earth orbit satellites. O3b Networks (now part of SES) currently maintains 12 satellites at altitude of 8,000 km, which is about 1/4 the distance of geosynchronous competitors. This month O3b Networks plans to launch four more satellites from French Guiana aboard a Soyuz rocket from Arianespace. An additional four satellites are scheduled to be launched in 2019.

The network provides backhaul services to mobile providers as mobile 4G subscribers grow from 1.6 to 3.8 billion by 2020. The network also serves multiple niche markets such as emergency response and cruise ships.

The name “O3b” derives from “other three billion” — in reference to those on the planet currently without broadband.